Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochimie ; 199: 123-129, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35472565

RESUMO

Hairpin polyamides (PAs) are remarkable minor groove-binding DNA ligands that demonstrate high affinity and sequence selectivity. Following extensive studies of 6-8 ring hairpin PAs have been more recent descriptions of larger PAs (14 rings or more) and their distinguishing properties and biological activities. However, there are no comparative kinetic studies of PA DNA binding behaviors over a range of PA sizes, making it difficult to understand important structure-activity relationships related to PA size. Described herein is the first comparative kinetic study as a function of hairpin PA size that examines the complexities of PA-DNA binding behaviors with unprecedented detail. DNA binding kinetics of PAs with 6 (PA6) and 20 (PA20) rings are extensively characterized by fluorescence spectroscopy, and the properties compared with those of 8 and 14 ring hairpin PAs. PA6 has a 1:1 binding site stoichiometry but exhibits biphasic association kinetics, consistent with populating more than one binding mode. One decay constant is at the diffusion controlled limit, and the other is 400-fold slower. In contrast, PA20 has high binding site stoichiometry (2.5:1) but displays a much simpler association kinetic trace with a decay constant of 1e6 M-1s-1. Due to the variability and complexity of association kinetics, it is difficult to identify trends in this behavior as a function of PA size. However, even though hairpin PAs of 8 or more rings bind DNA with similar affinities, residence times increase as PA size increases, ranging from 20 s to over 2500 s. Particularly compelling is that the antiviral PA20 shows little to no dissociation from DNA when challenged with competitor DNA, suggesting that high residence times are important for this biological activity.


Assuntos
DNA , Nylons , Sítios de Ligação , DNA/química , Cinética , Conformação de Ácido Nucleico , Nylons/química , Espectrometria de Fluorescência
2.
Biochimie ; 185: 146-154, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33794342

RESUMO

Polyamides (PAs) are powerful DNA ligands that can bind the minor groove of DNA with high affinity and specificity. While the characterization of PA-DNA behavior has focused principally on hairpin PAs 6-8 rings in size, there is increasing evidence that their behavior does not necessarily reflect the complexities that are emerging from studies of larger hairpin PAs, particularly concerning sequence mismatch tolerance and observed but unaddressed high PA-target site binding stoichiometries. To explore these complexities in more detail, kinetics studies of binding a large anti-HPV hairpin polyamide to an isolated DNA recognition site are described. Using a fluorescence assay, two distinct binding phases are observed for the first time in hairpin PA literature. PA14 concentration dependence analysis indicates that the faster binding event is diffusion-controlled; the apparent, second event is significantly slower (350-1500 fold). Both association phases are sampled in 1:1 complexes, consistent with cooperative binding of two PA molecules even under this condition. Fitting of the slow phase to a biexponential model yields two λon,app that differ by 4-5-fold, which is consistent with the high mismatch tolerance and binding site stoichiometry previously observed. A/T patterns in the recognition sequence do not affect these decay constants significantly. Dissociation decay constants are among the slowest reported for hairpin PAs (10-3 s-1), independent of A/T pattern, and may point to the efficacy of PA14 as an antiviral.


Assuntos
Antivirais/química , DNA/química , Nylons/química , Sítios de Ligação , Cinética
3.
Biochimie ; 165: 170-178, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31376420

RESUMO

The interactions of 6-8 ring hairpin polyamides (PAs) with the minor groove of DNA have been investigated extensively. More recent studies of large antiviral PAs (14-20 rings) active against small DNA tumor viruses lead to questions regarding the extent to which the DNA binding behaviors of the well studied, smaller PAs can be reliably extrapolated to the larger ones. Described here is the first reported study of hairpin PA-DNA binding thermodynamics as a function of PA size (6-20 rings). All PAs exhibit binding affinity in the low nM to upper pM range, which indicates that affinity is not a discriminator of antiviral activity. Unlike the smaller PAs, a 20-ring PA does not appreciably dissociate from DNA in competition experiments, which indicates very long residence time that is consistent with antiviral activity. While the DNA binding thermodynamics for the smaller antivirally inactive 6- and 8-ring PAs is clearly enthalpically driven, the larger antiviral PAs (14- and 20-rings) exhibit strongly entropically-driven DNA binding. These distinct energetic signatures indicate that different types of interactions drive these associations. In DNA binding site stoichiometry experiments conducted at both nM and µM concentrations, all PAs except the 6-ring PA bind an isolated site with site stoichiometry of at least two PAs per recognition sequence. Electrostatic contributions to DNA binding affinity are small for all PAs and not correlated with PA size but weakly correlated with the number of imidazole residues. Altogether, these results indicate that DNA binding behaviors of smaller hairpin PAs do not necessarily reflect those of larger PAs. These are vital considerations in the development of hairpin PAs for biological use.


Assuntos
Antivirais/química , DNA de Neoplasias/química , DNA Viral/química , Imidazóis/química , Sítios de Ligação , Sequências Repetidas Invertidas , Conformação de Ácido Nucleico , Termodinâmica
4.
Biochimie ; 157: 149-157, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30481539

RESUMO

PA1 (dIm-PyPyßPyPyPy-γ-PyPyßPyPyPyPyß-Ta) is a large (14-ring) hairpin polyamide that was designed to recognize the DNA sequence 5'-W2GW7-3', where W is either A or T. As is common among the smaller 6-8-ring hairpin polyamides (PAs), it binds its target recognition sequence with low nM affinity. However, in addition to its large size, it is distinct from these more extensively characterized PAs in its high tolerance for mismatches and antiviral properties. In ongoing attempts to understand the basis for these distinctions, we conducted thermodynamics studies of PA1-DNA interactions. The temperature dependence of binding affinity was measured using TAMRA-labeled hairpin DNAs containing a single target sequence. PA1 binding to either an ATAT/TATA or an AAAA/TTTT pattern is consistently entropically driven. This is in contrast to the A/T pattern-dependent driving forces for DNA binding by netropsin, distamycin, and smaller hairpin polyamides. Analysis of the salt dependence of PA1-DNA binding reveals that within experimental error, there is no dependence on ionic strength, indicating that the polyelectrolyte effect does not contribute to PA1-DNA binding energetics. This is similar to that observed for smaller PAs. PA1-DNA recognition sequence binding stoichiometries were determined at both nM (fluorescence) and µM (circular dichroism) concentrations. With all sequences and under both conditions, multiple PA1 molecules bind the small DNA hairpin that contains only a single recognition sequence. Implications for these observations are discussed.


Assuntos
Antivirais/química , DNA/química , Distamicinas/química , Netropsina/química , Nylons/química , Termodinâmica
5.
Biochimie ; 127: 103-14, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27155361

RESUMO

PA1 and PA25 are large hairpin polyamides that are effective in nearly eliminating HPV16 episomes (DNA) in cell culture, and PA25 has broad spectrum activity against three cancer-causing forms of HPV (Edwards, T. G., Koeller, K. J., Slomczynska, U., Fok, K., Helmus, M., Bashkin, J. K., Fisher, C., Antiviral Res. 91 (2011) 177-186). Described here are the interactions of these PAs with sequences in the long control region (LCR) of HPV16 (7348-122). Using an FeEDTA conjugate of PA1 (designed to recognize 5'-W2GW7-3'; W = A or T), 34 affinity cleavage (AC) patterns were detected for this fragment. These sites can be rationalized with sequences featuring perfect, single, double, triple and quadruple mismatches. Quantitative DNase I footprinting analysis indicates that perfect sites bind PA1 with Kds between 0.7 and 2.2 nM. Kds for single, double, triple and quadruple mismatch sites range from 1-3 nM-20 nM. Using AC and EDTA conjugates, we report that unlike smaller 8-ring hairpin PAs, introduction of a chiral turn in this large polyamide has no effect on binding orientation (forward vs. reverse). Despite its design to recognize 5'-W2GW5GW4-3' via two Im residues, a motif not represented in this HPV sequence, a PA25-EDTA conjugate yielded 31 affinity cleavage sites on the region. Low nM Kds for PA25 without EDTA indicates a high tolerance for triple and quadruple mismatches. While there is extensive coverage of the sequence examined, AC cleavage patterns for the two PAs show discrete binding events and do not overlap significantly. This indicates that within the context of A/T rich sequences, these PAs do not recognize a simple shared sequence-related feature of the DNA. These insights continue to inform the complex nature of large hairpin PA-DNA interactions and antiviral behavior.


Assuntos
Antivirais/metabolismo , DNA Viral/genética , DNA Viral/metabolismo , Papillomavirus Humano 16/genética , Nylons/metabolismo , Sequência de Bases , Sequências Repetidas Invertidas , Plasmídeos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...